Baki, A. B. M., Zhu, D. Z., Harwood, A., Lewis, A., & Healey, K. (2017). Rock-weir fishway I: flow
regimes and hydraulic characteristics. Journal of Ecohydraulics, 2(2), 122–141. https://doi.org/10.1080/24705357.2017.1369182
Barrett, D. S., Triantafyllou, M. S., Yue, D. K. P., Grosenbaugh, M. A., & Wolfgang, M. J. (1999).
Drag reduction in fish-like locomotion. Journal of Fluid Mechanics, 392, 183–212. https://doi.org/10.1017/S0022112099005455
Beal, D. N., Hover, F. S., Triantafyllou, M. S., Liao, J. C., & Lauder, G. V. (2006). Passive propulsion
in vortex wakes. Journal of Fluid Mechanics, 549, 385–402. https://doi.org/10.1017/S0022112005007925
Belletti, B., Garcia de Leaniz, C., Jones, J., Bizzi, S., Börger, L., Segura, G., … Zalewski, M. (2020).
More than one million barriers fragment Europe’s rivers. Nature, 588(7838), 436–441. https://doi.org/10.1038/s41586-020-3005-2
Blake, R. W. (2004). Fish functional design and swimming performance. Journal of Fish Biology,
65(5), 1193–1222. https://doi.org/10.1111/j.0022-1112.2004.00568.x
Bombač, M., Četina, M., & Novak, G. (2017). Study on flow characteristics in vertical slot fishways
regarding slot layout optimization. Ecological Engineering, 107, 126–136. https://doi.org/10.1016/j.ecoleng.2017.07.008
Carlson, R. L., & Lauder, G. V. (2011). Escaping the flow: Boundary layer use by the darter
Etheostoma tetrazonum (Percidae) during benthic station holding. Journal of Experimental
Biology, 214(7), 1181–1193. https://doi.org/10.1242/jeb.051938
Castro-Santos, T., Cotel, A., & Webb, P. (2009). Fishway Evaluations for Better Bioengineering : An
Integrative Approach A Framework for Fishway. American Fisheries Society Symposium, 69,
557–575. Researchgate PDF
Chambers, L. D., Akanyeti, O., Venturelli, R., Jezǒv, J., Brown, J., Kruusmaa, M., … Megill, W. M.
(2014). A fish perspective: Detecting flow features while moving using an artificial lateral
line in steady and unsteady flow. Journal of the Royal Society Interface, 11(99). https://doi.org/10.1098/rsif.2014.0467
Coombs, S., Anderson, E., Braun, C. B., & Grosenbaugh, M. (2007). The hydrodynamic footprint of a
benthic, sedentary fish in unidirectional flow. The Journal of the Acoustical Society of
America, 122(2), 1227–1237. https://doi.org/10.1121/1.2749455
Dashinov, D., Czerniejewski, P., Balshine, S., Synyshyn, C., Tasheva-Terzieva, E., Stefanov, T., …
Uzunova, E. (2020). Variation in external morphology between the native and invasive
populations of the round goby, Neogobius melanostomus (Actinopterygii: Gobiidae).
Zoomorphology, 139(3), 361–371. https://doi.org/10.1007/s00435-020-00480-7
Davey, A. J. H., Hawkins, S. J., Turner, G. F., & Doncaster, C. P. (2005). Size-dependent microhabitat use and intraspecific competition in Cottus gobio. Journal of Fish Biology, 67(2), 428–443. https://doi.org/10.1111/j.0022-1112.2005.00736.x
Drucker, E. G., & Lauder, G. V. (1999). Locomotor forces on a swimming fish: Three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. Journal of Experimental Biology, 202(18), 2393–2412. https://doi.org/10.1242/jeb.202.18.2393
Egger, B., Wiegleb, J., Seidel, F., Burkhardt‐Holm, P., & Hirsch, P. E. (2020). Comparative
swimming performance and behaviour of three benthic fish species: The invasive round goby
(Neogobius melanostomus), the native bullhead (Cottus gobio), and the native gudgeon
(Gobio gobio). Ecology of Freshwater Fish, 30(3), 391–405. https://doi.org/10.1111/eff.12592
Facey, D. E., & Grossman, G. D. (1992). The relationship between velocity energetic costs and
microhabitat use in four North American stream fishes. Hydrobiologia, 239, 1–6. https://doi.org/10.1007/BF00027524
Fish, F. E., & Lauder, G. V. (2006). Passive and active flow control by swimming fishes and mammals. Annual Review of Fluid Mechanics, 38, 193–224.https://doi.org/10.1146/annurev.fluid.38.050304.092201
Franssen, N. R., Stewart, L. K., & Schaefer, J. F. (2013). Morphological divergence and flow-induced
phenotypic plasticity in a native fish from anthropogenically altered stream habitats. Ecology
and Evolution, 3(14), 4648–4657. https://doi.org/10.1002/ece3.842
Fuentes-Pérez, J. F., Tuhtan, J. A., Carbonell-Baeza, R., Musall, M., Toming, G., Muhammad, N., &
Kruusmaa, M. (2015). Current velocity estimation using a lateral line probe. Ecological
Engineering, 85, 296–300. https://doi.org/10.1016/j.ecoleng.2015.10.008
Gilbert, M. J. H., Barbarich, J. M., Casselman, M., Kasurak, A. V., Higgs, D. M., & Tierney, K. B.
(2016). The role of substrate holding in achieving critical swimming speeds: a case study
using the invasive round goby (Neogobius melanostomus). Environmental Biology of Fishes,
99(10), 793–799. https://doi.org/10.1007/s10641-016-0514-9
Gosselin, M. P., Petts, G. E., & Maddock, I. P. (2010). Mesohabitat use by bullhead (Cottus gobio). Hydrobiologia, 652(1), 299–310. https://doi.org/10.1007/s10750-010-0363-z
Habersack, H., & Piégay, H. (2007). 27 River restoration in the Alps and their surroundings: past experience and future challenges. Developments in Earth Surface Processes, 11(07), 703–735. https://doi.org/10.1016/S0928-2025(07)11161-5
Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S., & Kats, L. B. (2015). Aquatic invasive species: challenges for the future. Hydrobiologia, 750(1), 147–170. https://doi.org/10.1007/s10750-014-2166-0
Hirsch, P. E., Thorlacius, M., Brodin, T., & Burkhardt-Holm, P. (2017). An approach to incorporate individual personality in modeling fish dispersal across in-stream barriers. Ecology and Evolution, 7(2), 720–732. https://doi.org/10.1002/ece3.2629
Hoover, J. J., Adams, S. R., & Killgore, K. J. (2003). Can Hydraulic Barriers Stop the Spread of the Round Goby? Environmental Laboratory (U.S). https://hdl.handle.net/11681/5086
Imre, I. (2002). Phenotypic plasticity in brook charr: changes in caudal fin induced by water flow.
Journal of Fish Biology, 61(5), 1171–1181. https://doi.org/10.1006/jfbi.2002.2131
Kalchhauser, I., Mutzner, P., Hirsch, P. E., & Burkhardt-Holm, P. (2013). Arrival of round goby neogobius melanostomus (Pallas, 1814) and bighead goby ponticola kessleri (Günther, 1861) in the high rhine (Switzerland). BioInvasions Records, 2(1), 79–83.https://doi.org/10.3391/bir.2013.2.1.14
Katopodis, C., & Williams, J. G. (2012). The development of fish passage research in a historical
context. Ecological Engineering, 48, 8–18. https://doi.org/10.1016/j.ecoleng.2011.07.004
Kieffer, J. D., & Colgan, P. W. (1992). The role of learning in fish behaviour. Reviews in Fish Biology and Fisheries, 2(2), 125–143. https://doi.org/10.1007/BF00042881
Lauder, G. V., & Madden, P. G. A. (2007). Fish locomotion: Kinematics and hydrodynamics of flexible foil-like fins. Experiments in Fluids, 43(5), 641–653. https://doi.org/10.1007/s00348-007-0357-4
Liu, M., Rajaratnam, N., & Zhu, D. Z. (2006). Mean flow and turbulence structure in vertical slot
fishways. Journal of Hydraulic Engineering, 132(8), 765–777. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:8(765)
Lothian, A. J., & Lucas, M. C. (2021). The role of individual behavioral traits on fishway passage
attempt behavior. Ecology and Evolution, 11(17), 11974-11990. https://doi.org/10.1002/ece3.7964
Lupandin, A. I. (2005). Effect of flow turbulence on swimming speed of fish. Biology Bulletin, 32(5),
461–466. https://doi.org/10.1007/s10525-005-0125-z
Lutz, E., Hirsch, P. E., Bussmann, K., Wiegleb, J., Jermann, H.-P., Muller, R., … Adrian-Kalchhauser, I. (2020). Predation on native fish eggs by invasive round goby revealed by species-specific gut content DNA analyses. Aquatic Conservation: Marine and Freshwater Ecosystems. https://doi.org/10.1002/aqc.3409
Mallen-Cooper, M., & Brand, D. A. (2007). Non-salmonids in a salmonid fishway: What do 50 years of data tell us about past and future fish passage? Fisheries Management and Ecology, 14(5), 319–332. https://doi.org/10.1111/j.1365-2400.2007.00557.x
Mandal, R., Connolly, R. M., Schlacher, T. A., & Stantic, B. (2018). Assessing fish abundance from underwater video using deep neural networks. Proceedings of the International Joint Conference on Neural Networks, 2018-July, 1–6. https://doi.org/10.1109/IJCNN.2018.8489482
Meyers, P. J., & Belk, M. C. (2014). Shape variation in a benthic stream fish across flow regimes.
Hydrobiologia, 738(1), 147–154. https://doi.org/10.1007/s10750-014-1926-1
Ohlberger, J., Staaks, G., & Hölker, F. (2006). Swimming efficiency and the influence of morphology
on swimming costs in fishes. Journal of Comparative Physiology B: Biochemical, Systemic,
and Environmental Physiology, 176(1), 17–25. https://doi.org/10.1007/s00360-005-0024-0
Porreca, A. P., Hintz, W. D., & Garvey, J. E. (2017). Do Alluvial Sand Dunes Create Energetic Refugia for Benthic Fishes? An Experimental Test with the Endangered Pallid Sturgeon. River Research and Applications, 33(5), 690–696. https://doi.org/10.1002/rra.3132
Quicazan-Rubio, E. M., Van Leeuwen, J. L., Van Manen, K., Fleuren, M., Pollux, B. J. A., &
Stamhuis, E. J. (2019). Coasting in live-bearing fish: The drag penalty of being pregnant.
Journal of the Royal Society Interface, 16(151), 20180714. https://doi.org/10.1098/rsif.2018.0714
Rahel, F. J., & McLaughlin, R. L. (2018). Selective fragmentation and the management of fish
movement across anthropogenic barriers. Ecological Applications, 28(8), 2066–2081. https://doi.org/10.1002/eap.1795
Rodríguez, Á., Bermúdez, M., Rabuñal, J. R., & Puertas, J. (2015). Fish tracking in vertical slot fishways using computer vision techniques. Journal of Hydroinformatics, 17(2), 275–292. https://doi.org/10.2166/hydro.2014.034
Roje, S., Drozd, B., Richter, L., Kubec, J., Polívka, Z., Worischka, S., & Buřič, M. (2021). Comparison of behavior and space use of the european bullhead cottus gobio and the round goby neogobius melanostomus in a simulated natural habitat. Biology, 10(9). https://doi.org/10.3390/biology10090821
Sagnes, P., Champagne, J. Y., & Morel, R. (2000). Shifts in drag and swimming potential during
grayling ontogenesis: Relations with habitat use. Journal of Fish Biology, 57(1), 52–68. https://doi.org/10.1006/jfbi.2000.1288
Sagnes, Pierre, & Statzner, B. (2009). Hydrodynamic abilities of riverine fish: a functional link
between morphology and velocity use. Aquatic Living Resources, 22(1), 79–91. https://doi.org/10.1051/alr/2009008
Sällström, E., & Ukeiley, L. (2014). Force estimation from incompressible flow field data using a
momentum balance approach. Experiments in Fluids, 55(1). https://doi.org/10.1007/s00348-
013-1655-7
Sfakiotakis, M., Lane, D. M., & Davies, J. B. C. (1999). Review of fish swimming modes for aquatic
locomotion. IEEE Journal of Oceanic Engineering, 24(2), 237–252. https://doi.org/10.1109/48.757275
Shafait, F., Mian, A., Shortis, M., Ghanem, B., Culverhouse, P. F., Edgington, D., … Harvey, E. S. (2016). Fish identification from videos captured in uncontrolled underwater environments. ICES Journal of Marine Science: Journal Du Conseil, 73(10), 2737–2746.https://doi.org/10.1093/icesjms/fsw106
Shao, X., Fang, Y., Jawitz, J. W., Yan, J., & Cui, B. (2019). River network connectivity and fish diversity. Science of the Total Environment, 689(19), 21–30. https://doi.org/10.1016/j.scitotenv.2019.06.340
Tierney, K. B., Kasurak, A. V., Zielinski, B. S., & Higgs, D. M. (2011). Swimming performance and
invasion potential of the round goby. Environmental Biology of Fishes, 92(4), 491–502. https://doi.org/10.1007/s10641-011-9867-2
Triantafyllou, M. S., Triantafyllou, G. S., & Yue, D. K. P. (2000). Hydrodynamics of fishlike swimming. Annual Review of Fluid Mechanics, 32, 33–53. https://www.annualreviews.org/doi/full/10.1146/annurev.fluid.32.1.33
Tudorache, C., Viaene, P., Blust, R., Vereecken, H., & De Boeck, G. (2008). A comparison of
swimming capacity and energy use in seven European freshwater fish species. Ecology of
Freshwater Fish, 17(2), 284–291. https://doi.org/10.1111/j.1600-0633.2007.00280.x
United Nations. Convention on Biological Diversity, United Nations (1992). http://www.cbd.int/doc/legal/cbd-en.pdf
Van Liefferinge, C., Seeuws, P., Meire, P., & Verheyen, R. F. (2005). Microhabitat use and preferences of the endangered Cottus gobio in the River Voer, Belgium. Journal of Fish Biology, 67(4), 897–909. https://doi.org/10.1111/j.0022-1112.2005.00782.x
Venturelli, R., Akanyeti, O., Visentin, F., Jeov, J., Chambers, L. D., Toming, G., … Fiorini, P. (2012).
Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows.
Bioinspiration and Biomimetics, 7(3), 036004. https://doi.org/10.1088/1748-3182/7/3/036004
Wiegleb, J., Hirsch, P. E., Egger, B., Seidel, F., & Burkhardt-Holm, P. (2020). Flow field-induced
drag forces and swimming behavior of three benthic fish species. Limnologica, 84, 125812. https://doi.org/10.1016/j.limno.2020.125812
Wiegleb, J., Hirsch, P. E., Seidel, F., Rauter, G., & Burkhardt-Holm, P. (2022a). Flow, force, behaviour: assessment of a prototype hydraulic barrier for invasive fish. Hydrobiologia, 849(4), 1001–1019. https://doi.org/10.1007/s10750-021-04762-z
Wiegleb, J., Hirsch, P. E., Seidel, F., Rauter, G., & Burkhardt-Holm, P. (2022b). Impact of hydraulic forces on the passage of round goby (Neogobius melanostomus), gudgeon (Gobio gobio) and bullhead (Cottus gobio) in a vertical slot fish pass. Ecology of Freshwater Fish, 00, 1–15. https://doi.org/10.1111/eff.12696
Wang, X., & Gupta, A. (2015). Unsupervised learning of visual representations using videos. Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter, 2794–2802. https://doi.org/10.1109/ICCV.2015.320
Wu, S., Rajaratnam, N., & Katopodis, C. (1999). Structure of Flow in Vertical Slot Fishway. Journal
of Hydraulic Engineering, 125(4), 351–360. https://doi.org/10.1061/(asce)0733-
9429(1999)125:4(351)